use image::{ImageBuffer, Rgb}; use rayon::prelude::*; // Image size. const IMGW: u32 = 2000; const IMGH: u32 = 2000; // Fractal settings. const MAXITER: u32 = 512; const ESCRAD: f64 = 2.5; // Fractal bounds. const XMIN: f64 = -2.0; const XMAX: f64 = 2.0; const YMIN: f64 = -2.0; const YMAX: f64 = 2.0; fn main() { let w = IMGW as f64; let h = IMGH as f64; let pxs: Vec = (0..IMGH) .into_par_iter() .flat_map(|y| { (0..IMGW) .into_par_iter() .flat_map(move |x| { let cx = map_range(x as f64, 0.0, w, XMIN, XMAX); let cy = map_range(y as f64, 0.0, h, YMIN, YMAX); let c = num_complex::Complex::new(cx, cy); // Compute color for each pixel. col_map(esc_time(c)).to_vec() }) .collect::>() }) .collect(); // Create the image from the pixel buffer. let img = ImageBuffer::, _>::from_raw(IMGW, IMGH, pxs).unwrap(); img.save("h.png").unwrap(); println!("Done."); } // Maps a value from one range to another. fn map_range(val: f64, imin: f64, imax: f64, omin: f64, omax: f64) -> f64 { omin + (val - imin) * (omax - omin) / (imax - imin) } // Computes the escape time for a given point in the complex plane. fn esc_time(c: num_complex::Complex) -> u32 { let mut z = c; for i in 0..MAXITER { if z.norm() > ESCRAD { return i; } z = (-z).ln() / z.ln(); } MAXITER } // Maps the iteration count to a color. fn col_map(iter: u32) -> [u8; 3] { if iter == MAXITER { [0, 0, 0] // Black for points that never escape. } else { let t = iter as f64 / MAXITER as f64; let c = (8.5 * (1.0 - t) * (1.0 - t) * (1.0 - t) * t * 255.0) as u8; [c, c, c] } }