2024-09-18 13:05:17 -04:00

61 lines
1.8 KiB
C++

/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _MATH_UTILS_HPP_
#define _MATH_UTILS_HPP_
#include <cmath>
#include <iostream>
namespace squiggles {
/**
* Returns the sign value of the given value.
*
* @return 1 if the value is positive, -1 if the value is negative, and 0 if
* the value is 0.
*/
template <class T> inline int sgn(T v) {
return (v > T(0)) - (v < T(0));
}
inline bool
nearly_equal(const double& a, const double& b, double epsilon = 1e-5) {
return std::fabs(a - b) < epsilon;
}
} // namespace squiggles
namespace std {
// Copied from https://github.com/emsr/cxx_linear
template <typename _Float>
constexpr std::enable_if_t<
std::is_floating_point_v<_Float> &&
__cplusplus <= 201703L, // Only defines this function if C++ standard < 20
_Float>
lerp(_Float __a, _Float __b, _Float __t) {
if (std::isnan(__a) || std::isnan(__b) || std::isnan(__t))
return std::numeric_limits<_Float>::quiet_NaN();
else if ((__a <= _Float{0} && __b >= _Float{0}) ||
(__a >= _Float{0} && __b <= _Float{0}))
// ab <= 0 but product could overflow.
#ifndef FMA
return __t * __b + (_Float{1} - __t) * __a;
#else
return std::fma(__t, __b, (_Float{1} - __t) * __a);
#endif
else if (__t == _Float{1})
return __b;
else { // monotonic near t == 1.
#ifndef FMA
const auto __x = __a + __t * (__b - __a);
#else
const auto __x = std::fma(__t, __b - __a, __a);
#endif
return (__t > _Float{1}) == (__b > __a) ? std::max(__b, __x)
: std::min(__b, __x);
}
}
} // namespace std
#endif