steak/include/okapi/api/chassis/model/skidSteerModel.hpp

199 lines
6.1 KiB
C++
Raw Permalink Normal View History

2024-09-18 13:05:17 -04:00
/*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#pragma once
#include "okapi/api/chassis/model/chassisModel.hpp"
#include "okapi/api/device/motor/abstractMotor.hpp"
#include "okapi/api/device/rotarysensor/continuousRotarySensor.hpp"
namespace okapi {
class SkidSteerModel : public ChassisModel {
public:
/**
* Model for a skid steer drive (wheels parallel with robot's direction of motion). When all
* motors are powered +100%, the robot should move forward in a straight line.
*
* @param ileftSideMotor The left side motor.
* @param irightSideMotor The right side motor.
* @param ileftEnc The left side encoder.
* @param irightEnc The right side encoder.
*/
SkidSteerModel(std::shared_ptr<AbstractMotor> ileftSideMotor,
std::shared_ptr<AbstractMotor> irightSideMotor,
std::shared_ptr<ContinuousRotarySensor> ileftEnc,
std::shared_ptr<ContinuousRotarySensor> irightEnc,
double imaxVelocity,
double imaxVoltage);
/**
* Drive the robot forwards (using open-loop control). Uses velocity mode.
*
* @param ispeed motor power
*/
void forward(double ispeed) override;
/**
* Drive the robot in an arc (using open-loop control). Uses velocity mode.
* The algorithm is (approximately):
* leftPower = ySpeed + zRotation
* rightPower = ySpeed - zRotation
*
* @param iySpeed speed on y axis (forward)
* @param izRotation speed around z axis (up)
*/
void driveVector(double iySpeed, double izRotation) override;
/**
* Drive the robot in an arc. Uses voltage mode.
* The algorithm is (approximately):
* leftPower = forwardSpeed + yaw
* rightPower = forwardSpeed - yaw
*
* @param iforwadSpeed speed in the forward direction
* @param iyaw speed around the vertical axis
*/
void driveVectorVoltage(double iforwardSpeed, double iyaw) override;
/**
* Turn the robot clockwise (using open-loop control). Uses velocity mode.
*
* @param ispeed motor power
*/
void rotate(double ispeed) override;
/**
* Stop the robot (set all the motors to 0). Uses velocity mode.
*/
void stop() override;
/**
* Drive the robot with a tank drive layout. Uses voltage mode.
*
* @param ileftSpeed left side speed
* @param irightSpeed right side speed
* @param ithreshold deadband on joystick values
*/
void tank(double ileftSpeed, double irightSpeed, double ithreshold = 0) override;
/**
* Drive the robot with an arcade drive layout. Uses voltage mode.
*
* @param iforwardSpeed speed in the forward direction
* @param iyaw speed around the vertical axis
* @param ithreshold deadband on joystick values
*/
void arcade(double iforwardSpeed, double iyaw, double ithreshold = 0) override;
/**
* Drive the robot with a curvature drive layout. The robot drives in constant radius turns
* where you control the curvature (inverse of radius) you drive in. This is advantageous
* because the forward speed will not affect the rate of turning. The algorithm switches to
* arcade if the forward speed is 0. Uses voltage mode.
*
* @param iforwardSpeed speed in the forward direction
* @param icurvature curvature (inverse of radius) to drive in
* @param ithreshold deadband on joystick values
*/
void curvature(double iforwardSpeed, double icurvature, double ithreshold = 0) override;
/**
* Power the left side motors. Uses velocity mode.
*
* @param ispeed The motor power.
*/
void left(double ispeed) override;
/**
* Power the right side motors. Uses velocity mode.
*
* @param ispeed The motor power.
*/
void right(double ispeed) override;
/**
* Read the sensors.
*
* @return sensor readings in the format {left, right}
*/
std::valarray<std::int32_t> getSensorVals() const override;
/**
* Reset the sensors to their zero point.
*/
void resetSensors() override;
/**
* Set the brake mode for each motor.
*
* @param mode new brake mode
*/
void setBrakeMode(AbstractMotor::brakeMode mode) override;
/**
* Set the encoder units for each motor.
*
* @param units new motor encoder units
*/
void setEncoderUnits(AbstractMotor::encoderUnits units) override;
/**
* Set the gearset for each motor.
*
* @param gearset new motor gearset
*/
void setGearing(AbstractMotor::gearset gearset) override;
/**
* Sets a new maximum velocity in RPM. The usable maximum depends on the maximum velocity of the
* currently installed gearset. If the configured maximum velocity is greater than the attainable
* maximum velocity from the currently installed gearset, the ChassisModel will still scale to
* that velocity.
*
* @param imaxVelocity The new maximum velocity.
*/
void setMaxVelocity(double imaxVelocity) override;
/**
* @return The current maximum velocity.
*/
double getMaxVelocity() const override;
/**
* Sets a new maximum voltage in mV in the range `[0-12000]`.
*
* @param imaxVoltage The new maximum voltage.
*/
void setMaxVoltage(double imaxVoltage) override;
/**
* @return The maximum voltage in mV in the range `[0-12000]`.
*/
double getMaxVoltage() const override;
/**
* Returns the left side motor.
*
* @return the left side motor
*/
std::shared_ptr<AbstractMotor> getLeftSideMotor() const;
/**
* Returns the left side motor.
*
* @return the left side motor
*/
std::shared_ptr<AbstractMotor> getRightSideMotor() const;
protected:
double maxVelocity;
double maxVoltage;
std::shared_ptr<AbstractMotor> leftSideMotor;
std::shared_ptr<AbstractMotor> rightSideMotor;
std::shared_ptr<ContinuousRotarySensor> leftSensor;
std::shared_ptr<ContinuousRotarySensor> rightSensor;
};
} // namespace okapi